Regulation of HPV16 E6 and MCL1 by SF3B1 inhibitor in head and neck cancer cells

نویسندگان

  • Yang Gao
  • Sumita Trivedi
  • Robert L. Ferris
  • Kazunori Koide
چکیده

ABT-737 inhibits the anti-apoptotic proteins B-cell lymphoma 2 (BCL-2) and BCL-X(L). Meayamycin B switches the splicing pattern of myeloid cell leukemia factor 1 (MCL1) pre-mRNA. Specifically, inhibition of splicing factor 3B subunit 1 (SF3B1) with meayamycin B promotes the generation of the proapoptotic, short splicing variant (MCL1-S) and diminishes the antiapoptotic, long variant (MCL1-L). This action was previously associated with the cytotoxicity of meayamycin B in non-small cell lung carcinoma cell lines. ABT-737 induced apoptosis in response to an ablation of MCL1-L by meayamycin B. In this study, we further exploited this synergistic combination in head and neck squamous cell carcinoma (HNSCC), up to 90% of which overexpress MCL1 and BCL-X(L). In a panel of seven HNSCC cell lines, the combination of meayamycin B and ABT-737 rapidly triggered a Bax/Bak-mediated apoptosis that overcame the resistance from HPV16-positive HNSCC against each agent alone. Both RT-PCR and Western blotting showed that meayamycin B up-regulated MCL1-S and down-regulated MCL1-L. Significantly, we discovered that SF3B1 was involved in the splicing of oncogenic HPV16 E6 to produce non-oncogenic HPV16 E6*, indicating that SF3B1 may inhibit HPV16-induced tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Methylation Status of CpG Sites within the HPV16 Long Control Region on HPV16-Positive Head and Neck Cancer Cells

OBJECTIVE To map comprehensively the methylation status of the CpG sites within the HPV16 long control region (LCR) in HPV-positive cancer cells, and to explore further the effects of methylation status of HPV16 LCR on cell bioactivity and E6 and E7 expression. In addition, to analyze the methylation status of the LCR in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) patients. MET...

متن کامل

Radioimmunotherapy of experimental head and neck squamous cell carcinoma (HNSCC) with E6-specific antibody using a novel HPV-16 positive HNSCC cell line

BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide with a poor prognosis. Human papilloma virus (HPV) infection is associated with 20% HNSCC, and 50% of oropharyngeal carcinoma. HPV16 type is detected in 90% of all HPV+ HNSCC. Recently we suggested a fundamentally different approach to treatment of cancers of viral origin by targeting viral an...

متن کامل

Does the expression of HPV16/18 E6/E7 in head and neck squamous cell carcinomas relate to their clinicopathological characteristics?

Human papilloma virus (HPV) has been recently proposed to be implicated in the development of head and neck squamous cell carcinoma (HNSCC) in patients without cancer risk. We examined the expression of HPV16/18 E6/E7 in 71 cases of HNSCCs and investigated abnormalities of the p53 gene in 62 of these 71 cases. Expression of HPV16 E6/E7 was observed in 11 of the 71 cases (15.5%), while expressio...

متن کامل

In silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein

Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered to be the fourth leading cause of mortality among women in the world. HPV is the most important cause of cervical cancer, which is the second most common cancer in women living in low and middle-income countries. To date, there is no effective cure for an ongoing HPV infection; therefore, it is required to in...

متن کامل

HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells.

Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014